

Tuesday, May 17, 2016

West Coast Climate and Materials Management Forum

The West Coast Climate and Materials Management Forum is an EPA-convened collaboration of state, local, and tribal government

- Develop ways to institutionalize sustainable materials management practices.
- Develop tools to help jurisdictions reduce the GHGs associated with materials

Check out the Forum's Resources

- Original Report Connecting Matls/Climate
- <u>Research Summaries</u>
- <u>Turnkey Materials Management Presentation</u>
- <u>Climate Action Toolkit</u>
- Food Too Good to Waste Toolkit
- <u>Climate Friendly Purchasing Toolkit</u>
- <u>www.westcoastclimateforum.com</u>

West Coast Climate Forum Webinar Series Disclaimer

This webinar is being provided as part of the West Coast Climate and Materials Management Forum Webinar Series. The Forum is convened by EPA Regions 9 and 10 and operates under statutory authority in the Pollution Prevention Act, the Resource Conservation and Recovery Act (RCRA), and the Clean Air Act. We invite guest speakers to share their views on climate change topics to get participants thinking and talking about new strategies for achieving our environmental goals. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. **Please note the opinions, ideas, or data presented by non-EPA speakers in this series do not represent EPA policy or constitute endorsement by EPA.**

Climate Friendly Purchasing Toolkit: Asphalt and Concrete

Speakers

Moderator

Jenifer Willer City of Eugene Jenifer.M.Willer@ci.eugene.or.us Jordan Palmeri Oregon DEQ palmeri.jordan@deq.state.or.us Wes Sullens StopWaste AlamedaCounty wsullens@stopwaste.org

Climate Friendly Purchasing Toolkit

Climate Friendly Purchasing Toolkit

Harnessing the power of public purchasing to reduce Greenhouse Gas (GHG) Emissions

The Climate Friendly Purchasing Toolkit provides clear guidance, tested strategies, and critical resources for governments at all levels to reduce the GHG emissions through their supply chain.

Learn More

Public Institution Purchasing Power

Governments, collectively, spend over 1.6 trillion dollars year

Toolkit Goals:

- Reduce carbon footprint from purchases
- Identify the most carbon-intensive products and services
- Provide how-to guide for purchasing professionals

Scope of Toolkit

Cities, counties, public utilities, higher education Carbon lens Modular

Toolkit Modules

Climate Friendly Purchasing Toolkit: Asphalt and Concrete

Speakers

Moderator

Jenifer Willer City of Eugene Jenifer.M.Willer@ci.eugene.or.us Jordan Palmeri Oregon DEQ palmeri.jordan@deq.state.or.us Wes Sullens StopWaste AlamedaCounty wsullens@stopwaste.org

THANK YOU

- □ Fall Webinars:
- Carpet, Food, Professional Services.
 Watch your email for registration
 Survey for today's webinar

The Construction Industry

Startling Statistics

- Governments at all levels spend more than \$1.3 Trillion annually on goods and services.
- Research shows that those purchases the supply chain account for 35-55% of the total greenhouse gas emissions associated with government operations.

• What about the construction sector specifically?

Percentage of supply chain emissions by annual revenue and purchasing category

Based on data for public agencies and institutions

In this figure, global resource extraction (including only used materials) between 1980 and 2011 is presented. Four material categories are separately shown: metal ores, industrial and construction minerals, fossil fuels and biomass (from agriculture, forestry and fishery).

Resource extraction has doubled since 1980 worldwide, and nearly tripled for the construction and industrial sectors

10-15% of building materials are wasted during the construction process

C CNI

af beit fit ber tilte will som filss enter

HER IS THE REAL PROPERTY AND AND AND AND

ant finge if biget Hent de

400 m

1000

 The use of our buildings account for 38% of all CO₂ emissions and 73% of electricity consumption

530 million tons of construction and demolition (C&D) debris were generated in the US in 2013—more than twice the amount of generated municipal solid waste

C&D Generation Composition by Material, 2013 530 Million Tons (before recycling)

Source: EPA, Advancing Sustainable Materials Management: Facts & Figures 2013, June 2015

Summary & Conclusions

Ronofite Matrix: Acabalt				
Denents Matrix. Asphalt		Hot-Mix Asphalt Concrete (Basecase)	Warm-Mix Asphalt Concrete	
Cost	First Cost - Manufacturer	\$	\$\$	
	First Cost - Jurisdiction	\$	\$	
	Ongoing/Maintenance Costs	\$	\$	
Installation	Ease of Workability	✓	✓	
	Worker Safety (from Less Exposure)	1	55	
	Lead Time / Availability	Immediate	Depends	
	Durability	✓	<i>」</i>	
Carbon	Virgin Materials Extraction	✓	✓	
	Recycled Content Incorporation	up to 30%	35%+	
	Manufacturing Phase Emissions	\checkmark	✓	
	Installation Phase Emissions	<i>s s</i>	1	
	Recyclability at End of Life	<i>」</i>	11	

Note: Check marks and dollar signs are approximated and indicate where differences exist between the basecase and the alternative option. More checkmarks or dollar signs indicate a tendency to have greater impact or cost than a single mark. In cases where the basecase and alternative case are estimated to have the same cost or impact, those are shown with the same number dollar signs or checkmarks. This scorecard is for illustrative purposes only and results may vary based on location, availability of materials, and other factors.

Benefits Matrix: Concrete		Dortland Comont	Eluach /Slaa
		Portiana Cement	riyasn/siag
		Concrete	Replacement in
		(Basecase)	Concrete
Cost	First Cost - Manufacturer	\$	\$
	First Cost - Jurisdiction	\$	\$
	Ongoing/Maintenance Costs	\$	\$
Installation	Ease of Workability	<i>s s</i>	✓
	Worker Safety (from Less Exposure)	-	-
	Lead Time / Availability	Immediate	Depends
	Durability	1	\checkmark
Carbon	Virgin Materials Extraction	<i>s s</i>	✓
	Recycled Content Incorporation	0%	10 - 40%+
	Manufacturing Phase Emissions	\checkmark	✓
	Installation Phase Emissions	1	1
	Recyclability at End of Life	<i>s s</i>	\checkmark

Reducing Carbon Emissions From Concrete and Asphalt

All the presentations & resources can be found:

•West Coast Climate Forum: <u>westcoastclimateforum.com</u>

•Webinar archive:

westcoastclimateforum.com/annualwebinar

Future Topics

More to come from the construction sector: ♦ Best practices for construction waste recycling Recycled content in the age of transparency ♦ Updates in green codes & rating systems Integrating green construction principles into everyday practices Circular economy & construction materials

Wes Sullens StopWaste 510-891-6511 wsullens@stopwaste.org

Toolkit Module: Asphalt

Reducing Carbon Emissions from Asphalt Pavement Construction

June 7, 2016

Jenifer Willer, City of Eugene

Today's asphalt pavement outline:

- Why asphalt pavement was included in the toolkit
- The toolkit purchasing strategies in the asphalt pavement section
- Asphalt pavement section overview

For public institution construction projects:

- Construction emissions make up to 50% of total emissions
- Asphalt and asphalt pavements contribute about 10% to the total construction emissions

What is asphalt pavement?

- A hard surfacing for vehicles
- Made of gravel and sand, held together with asphalt cement (the "binder")

What is asphalt cement?

- A very thick liquid
- Heaviest part of crude oil after volatile and light fractions are distilled off for products like gasoline
- Needs to be "treated" to make it mixable

Climate Friendly Toolkit newest construction module for asphalt pavement includes:

- Warm Mix Asphalt Concrete (WMAC)
- Reclaimed Asphalt Pavement (RAP)

Example Asphalt Pavement Mixing Plant. Photo from Asphalt Pro Magazine (September 2012)

The Strategies

What is warm mix asphalt pavement?

- Asphalt pavement is produced and placed at 50 to 100°F lower than conventional hot mix asphalt.
- Produced by a variety of technologies, primarily using a "foaming process" or additives.

Why Warm Mix?

Warm Mix Asphalt Pavement

 Use of warm mix asphalt pavement reduces CO2e/ton of material by about 4%

The Strategies

What is reclaimed asphalt pavement?

- Asphalt Pavement removed from existing roadways
- Ground/crushed and stockpiled for future uses
- Added to asphalt plant mixing process reducing virgin gravel and asphalt cement binder

Reclaimed Asphalt Pavement

Example RAP Content	Estimated CO2e/ton Reduction
20%	14%
30%	21%

The Strategies

Warm Mix + RAP

Example Warm Mix + RAP	Estimated CO2e/ton Reduction
Warm Mix + 20% RAP	17%
Warm Mix + 30% RAP	24%

Two Strategies for Asphalt Pavement - Warm Mix Asphalt Concrete (WMAC) & Reclaimed Asphalt Pavement (RAP)

- Introduction
- Summary of benefits and concerns
- Best practices

Warm Mix Asphalt Pavement

	Benefits		Concerns
•	Reduced energy use and GHG	New equip	oment investment by
	emissions	asphalt pla	ants or costs associated
•	Cost savings from lower	with propr	ietary materials
	energy use	Unfamiliar	ity with product
•	Improved working conditions		
•	Long term quality		

Reclaimed Asphalt Pavement

	Benefits	Concerns
•	Widely used and proven technique	• RAP can result in a very stiff and
•	Reduces costs, energy use and	difficult to apply mixture.
	GHGs	 Variability among RAP stockpiles
•	Can be used in a variety of asphalt mixes	
•	Improves strength and durability	
•	Reduces consumption of natural	
	resources	

Purchasing Best Practices:

- Know what is available in your area and the properties of those materials
- Use a specification for the product available and the mix properties desired
- Require QA/QC of the mix

Considerations

- Cost
- Operational Effects
- Local Availability

Use of WMAC in the U.S., 2009 - 2012

Measurement Resources

- Standardized analyses
- Calculators

Purchasing Resources

- Sample specifications
- Industry recommendations

Case Study

Case Study – City of Eugene

- Using warm mix asphalt pavement and RAP mixes
- Agencies can influence materials and technology available

Case Study – City of Eugene Warm Mix Asphalt Pavement & RAP

- Introduced at an Asphalt Pavement Association of Oregon annual conference
- Three pilot projects in 2009
- Standard specification in 2010
- Standard to combine with 30% reclaimed asphalt pavement, but this is increasing

Case Study

Case Study – City of Eugene Warm Mix Asphalt Pavement & RAP

 From 2009 – 2015, placed about 403,000 tons of WMAC + 30-35% RAP:

• reduction of ~9,700 Metric Tons of CO_2e .

- In 2015, nearly 13,000 tons of RAP were used on capital paving projects:
 - reduction of ~750 tons of asphalt cement
 - reduction of \sim 12,000 tons of virgin aggregate

Next Steps...

- Add use of shingles to the toolbox.
- Add In-Place Reclamation to the tool box.
- Others?

Thank You

Jenifer Willer, P.E. City of Eugene Public Works Engineering jenifer.m.willer@ci.eugene.or.us (541)501-0376

Visit the Forum's website to learn more, view past webinars and sign up for the e-newsletter.

www.westcoastclimateforum.com

Webinar, June 7th, 2016 – Jordan Palmeri, Oregon DEQ

West Coast Climate & Materials Management Forum

- □ Thank you:
 - Aron Toneys, Good Company, Eugene, OR
 Wes Sullens, Stopwaste, Alameda County, CA
 Shannon Davis, EPA, Region 9

Toolkit Module: Concrete

Reducing Carbon Emissions from Concrete Purchases

What is concrete?

Photo: Concreteanswers.org

Greenhouse Gas Emission from Concrete

Source: 4000psi mix, CSI tool

Limestone + heat = lime + carbon dioxide

$CaCO_3 \rightarrow CaO + CO_2(g)$

Cement Industry is Growing

Source: IPCC AR5 Report

Source: LC3.ch

- Request or require Environmental Product Declarations (EPDs)
- 2. Use Supplementary Cementitious Material (SCM)
- 3. Request or require recycled aggregate for concrete mixes

Greenhouse Gas Emission from Concrete

Source: 4000psi mix, CSI tool

Supplementary Cementitcious Materials (SCMs)

Image: Portland Cement Association

Supplementary Cementicious Materials (SCMs)

- 1. Coal fly ash
- 2. Granulated Blast furnace slag
- 3. Silica Fume
- 4. Natural Pozzolans
 - 1. Volcanic Ash
 - 2. Glass
 - 3. Calcined clay

Summary of Fly Ash benefits and concerns.

Benefits	Concerns
 Stronger, denser, and more durable Less permeable to corroding water Protects steel better than Portland cement Reduced risk of micro cracking Increased workability Reduced water usage Strength increased over time Produces white architectural concrete 	 Contains several chemicals that raise concerns about toxicity Longer set time could delay construction times and reduce early strength Transportation of fly ash can be cost prohibitive

COST of using SCMs = recent study showed range 8% savings to 3.5% increase in the Pacific Northwest

Slag benefits and concerns

Summary of granulated blast furnace slag benefits and concerns.

Benefits	Concerns
 Greater workability 	 Longer set time could delay construction
 Reduced risk of micro cracking 	times and reduce early strength
 Reduction of energy and GHGs 	 Increased risk of salt scaling
 Produces white architectural concrete 	 Human health and safety concerns
 Creates a higher quality concrete that is 	
stronger, denser, and more durable	

COST of using SCMs = recent study showed range 8% savings to 3.5% increase in the Pacific Northwest

SCMs reduce carbon

- Request or require Environmental Product Declarations (EPDs)
- Use Supplementary Cementitious Materials (SCM)
- 3. Request or require recycled aggregate for concrete mixes

- Request or require Environmental Product Declarations (EPDs)
- 2. Use Supplementary Cementitious Material (SCM)
- 3. Request or require recycled aggregate for concrete mixes

Require minimum SCM use

City of Seattle sidewalks

Raise allowable SCM max limits

Application	Allowed Max. Fly Ash by either WSDOT or SDOT	Actual Max. Fly Ash in WSDOT or SDOT Mixes	Allowed Max. Slag by either WSDOT or SDOT	Actual Max. Slag in Peer Agency Mixes
General Purpose	35%	25%	50%	35%
Roadway Concrete	25%	25%	25%	25%
Bridge Decks	20%	16.7%	30%	0%
Elevated Approach	20%	16.7%	30%	0%
Temp. Guide Walls	Not Specified	0%	Not Specified	50%
Underwater	35%	0%	50%	0%
Pilings / Drilled Shafts	35%	25%	50%	50%

Max SCM limits vs actual SCM use in Washington DOT and Seattle DOT projects

Google Images

- Request or require Environmental Product Declarations (EPDs)
- 2. Use Supplementary Cementitious Material (SCM)
- 3. Request or require recycled aggregate for concrete mixes

Request or Require Environmental Product Declarations (EPDs)

- Standardized ways of reporting environmental impacts of products
- Third party certified
- LEED V4 driving EPD market

EPD "Nutrition" Label					
Your Building Product					
Amount per Unit					
LCA IMACT MEASURES	TOTAL				
Primary Energy (MJ)	12.4				
Global Warming Potential (kg CO ² eq)	0.96				
Ozone Depletion (kg CFC·11 eq)	1.80E-08				
Acidification Potential (mol H+ eq)	0.93				
Eutrophication Potential (kg N ⁻ eq)	6.43E-04				
Photo-Oxidant Creation Potential (kg 03 eq)	0.121				
Your Product's Ingredients: Listed Here					

What's in a concrete EPD?

Environmental Product Declaration

CalPortland Company

Dupont, Duwamish & Tumwater WA Plants **READY-MIXED CONCRETE**

Table 5. Life Cycle Category Indicators and Inventory Metrics					
#	LCIA Indicators	Abbreviations	Units		
1	Global Warming Potential (climate change)	GWP	kg CO2-eq		
2	Ozone Depletion Potential	ODP	kg CFC-11-eq		
3	Acidification Potential	AP	kg SO2-eq		
4	Eutrophication Potential	EP	kg N-eq		
5	Photochemical Ozone Creation/Smog Potential	POCP	kg O3-eq		
	Life Cycle Inventory Metrics				
6	Total primary energy consumption	PEC	MJ (HHV)		
7	Depletion of non-renewable energy resources	NRE	MJ (HHV)		
8	Use of renewable primary energy	RE	MJ (HHV)		
9	Depletion of non-renewable material resources	NRM	kg		
10	Use of renewable material resources	RM	kg		
11	Concrete batching water consumption	CBW	m3		
12	Concrete washing water consumption	CWW	m3		
13	Total water consumption	TW	m3		
14	Hazardous waste	HW	kg		
15	Non-hazardous waste	NHW	kg		

How to use an EPD to purchase concrete

- Reward companies that have EPDs during the bidding process with extra points
- Require EPDs and specify either a carbon target or % reduction compared to industry averages
- 3. Require EPDs during bid process, select based on traditional methods, and use EPDs to obtain lowest carbon mix possible for your project

Contract language for EPDs

11. Provide documentation as requested by Sellen Construction Company, to achieve LEED Platinum certification of the project. Required documentation includes Environmental Product Declarations (EPDs) for all of the mixes. The EPDs will be specific to the mixes used in this project (not general industry-wide EPDs) and the EPDs will be in accordance to the requirements of the LEED version 4 credit, MRc2 (Building Product Disclosure and Optimization – Environmental Product Declarations), option 1, Product-specific Type III EPD (i.e. product's EPD has third party certification). The cost of developing EPDs is included in the unit prices.

- 1063 Block Replacement Project, Olympia, WA
- State of Washington public office building

- All concrete plants in Oregon get free access to a web based EPD tool
- 2. Technical support
- Reimbursement for 3rd party verified EPD -\$2,500/plant

State of Oregon Department of Environmental Quality

Other toolkit components

- Purchasing Considerations
- SCM overview
- Emerging technologies
- Case studies

Jordan Palmeri Oregon DEQ Palmeri.jordan@deq.state.or.us 503-229-6766

Visit the Forum's website to learn more, view past webinars and sign up for the e-newsletter.

www.westcoastclimateforum.com

