

Reducing Carbon Emissions From Concrete and Asphalt

- West Coast Climate Forum:
 <u>westcoastclimateforum.com</u>
- Webinar archive: <u>westcoastclimateforum.com/annualwebinar</u>

West Coast Climate & Materials Management Forum

West Coast Climate Forum Webinar Series Disclaimer

This webinar is being provided as part of the West Coast Climate and Materials Management Forum Webinar Series. The Forum is convened by EPA Regions 9 and 10 and operates under statutory authority in the Pollution Prevention Act, the Resource Conservation and Recovery Act (RCRA), and the Clean Air Act. We invite guest speakers to share their views on climate change topics to get participants thinking and talking about new strategies for achieving our environmental goals. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Please note the opinions, ideas, or data presented by non-EPA speakers in this series do not represent EPA policy or constitute endorsement by EPA.

Reducing Carbon Emissions From Concrete and Asphalt

Speakers:

Wes Sullens StopWaste Alameda County

Jenifer Willer City of Eugene

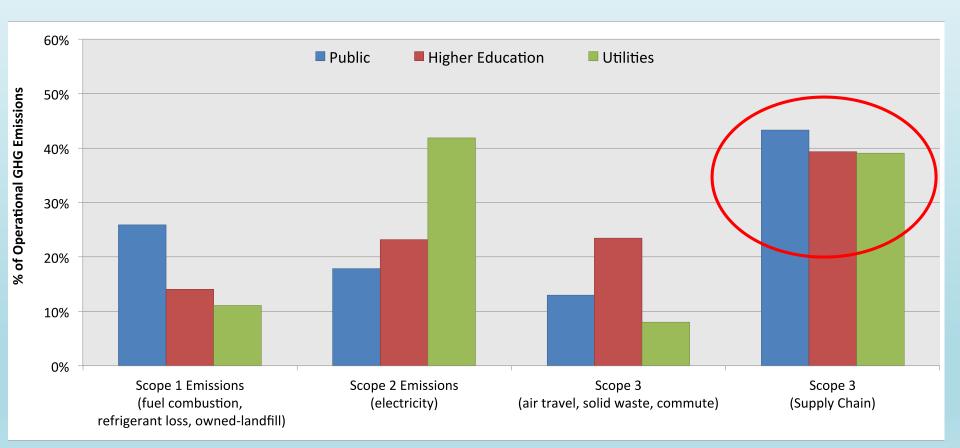
Stacy Ludington Oregon DEQ

Aaron Toneys Good Company

We value your feedback!

3-5 minute evaluation will be sent out in the follow-up email

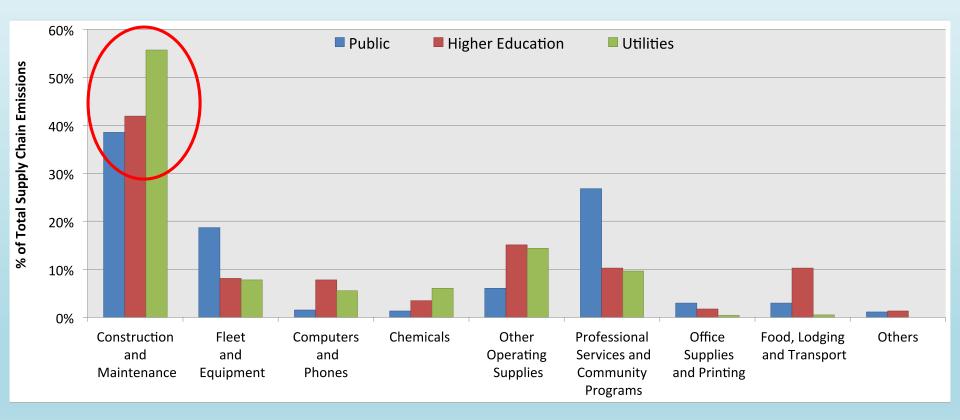
westcoastclimateforum.com

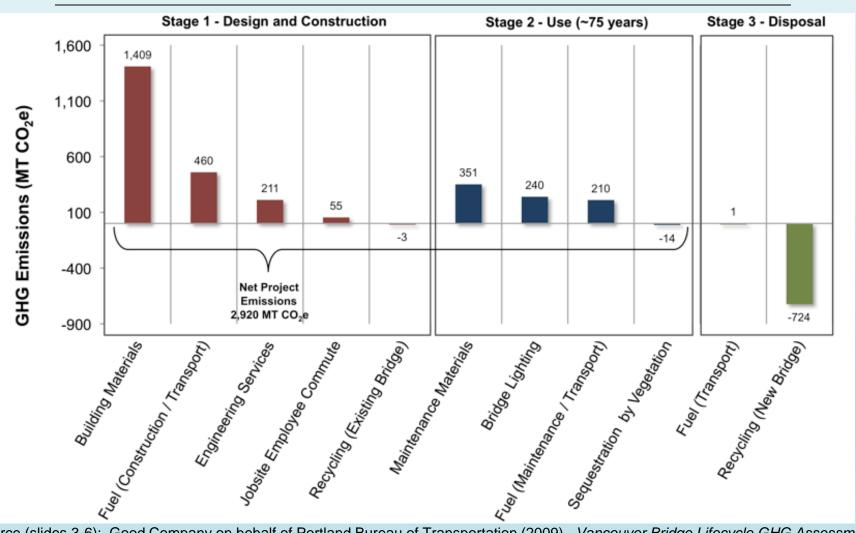

Good Company

- sustainability research and consulting firm
- mission-driven, for-profit
- clients: government, higher ed, private sector

Scopes 1&2 (Required)	Public	Private	Capital Projects	TOTAL
Electricity use (generated and purchased)	45	30	14	89
Stationary fuel use (natural gas, etc.)	45	30	14	89
Fugitive emissions of refrigerant use	45	30	N/A	75
Fleet fuel use (diesel, gasoline, CNG, LNG, etc.)	45	30	14	89
Scope 3 (Optional but Recommended)	Public	Private	Capital Projects	TOTAL
Solid waste management	45	23	11	79
Employee commute	45	24	8	77
Business travel (air, car, train, etc.)	45	23	8	76
Supply chain purchases from operations	30	24	14	68
Supply chain purchases from capital projects	30	24	14	68
Transit access trips	1	1	N/A	2
Benefits of mode shift to transit, congestion relief and land use multiplier	0	1	6	7
Benefits of onsite renewable energy generation	1	4	6	11

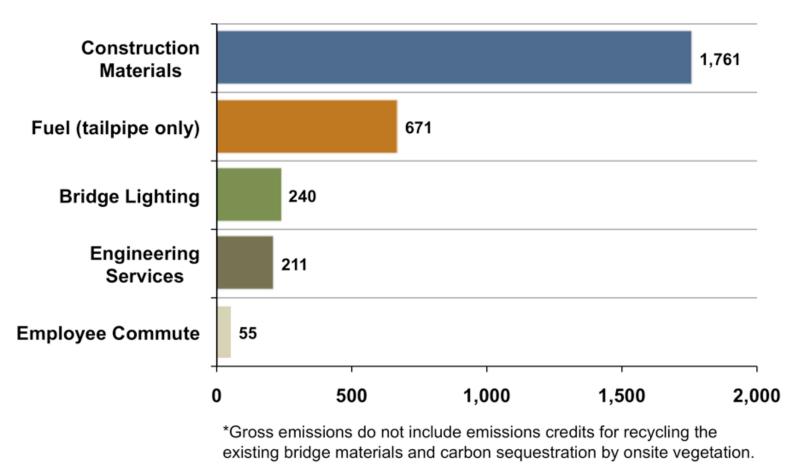
Results of Supply Chain Meta Analysis

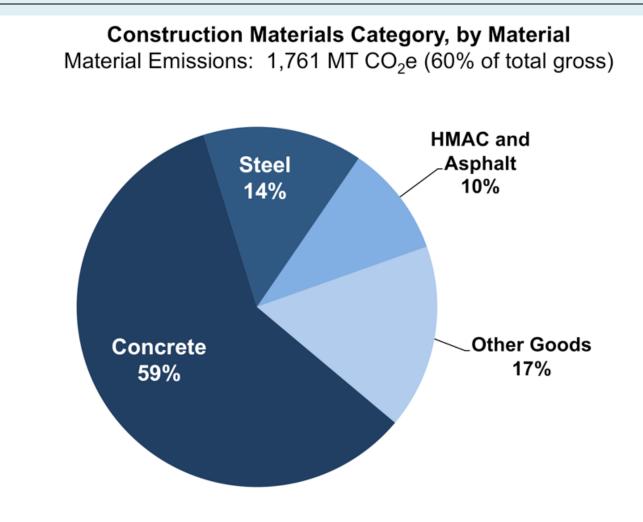

Significance of Supply Chain GHG Emissions


Source (slides 2-3): Good Company on behalf of Alameda County, CA (2015). Supply Chain Greenhouse Gas Inventory Meta-Analysis.

Results of Supply Chain Meta Analysis

Significance of Construction GHG Emissions


lifecycle emissions, by stage and source


Source (slides 3-6): Good Company on behalf of Portland Bureau of Transportation (2009). Vancouver Bridge Lifecycle GHG Assessment.

gross lifecycle emissions

North Vancouver Bridge Emissions, by Life-Cycle Category Gross Emissions*: 2,938 MT CO₂e

construction material emissions details

GHG reduction opportunities

Emissions Reduction Strategies	Maximum Potential Reductions MT CO ₂ e
1. Deconstructed Materials Management	-1,774
a. Existing Bridge	
i. Wood	-1,031
ii. Steel	-11
iii. Concrete	-8
b. New Bridge (~75 years from now)	
i. Steel	-628
ii. Concrete	-96
2. Increase Recycled Content	-695
a. Concrete - Fly Ash Substitution <i>i. Deck Concrete</i> <i>ii. Pre-Cast Beams</i>	-657 -30
a. Steel	
i. Pedestrian Railing	-8
3. Low-Carbon Fuels and Fuel Efficiency	-161
a. Low-Carbon Fuels <i>i. B20 in Construction Equipment</i>	-122
b. Fuel Efficiency	
i. Anti-Idling Policy	-17
ii. Equipment Efficiency	-22
MAXIMUM POTENTIAL REDUCTION:	-2,630

Thank You!

Feel free to contact me:

Aaron Toneys

aaron.toneys@goodcompany.com (541) 341-GOOD (4663), ext. 218

Construction Reduction:

Reducing Greenhouse Gas Emissions and Costs for Concrete, Asphalt, and Aggregate Stacy Ludington | Oregon DEQ May 12, 2015

Compile available information on GHG reductions and cost savings of concrete and asphalt substitute materials compared to traditional materials.

Explore benefits and concerns.

Asphalt

- Warm Mix Asphalt Concrete
 WMAC w/ 30% Reclaimed Asph
- www.ac.w/ 50% Reclaimed Asphal
- Pavement
- Hot Mix Asphalt Concrete w/30% RAP

Concrete

• Fly Ash

• Slag

Aggregate

Recycled aggregate

Asphalt

- 95% aggregate, 5% binder
- Heated to 300 350°F
- High heat volatizes chemical fumes
- 0.067 MT CO_2e / short ton

Hot-Mix Asphalt Concrete

Change in process
Chemical additives lower mixing temp. by 50-100°F

Benefits

•

Concerns

Risk of moisture

New equipment

investment by

asphalt plants

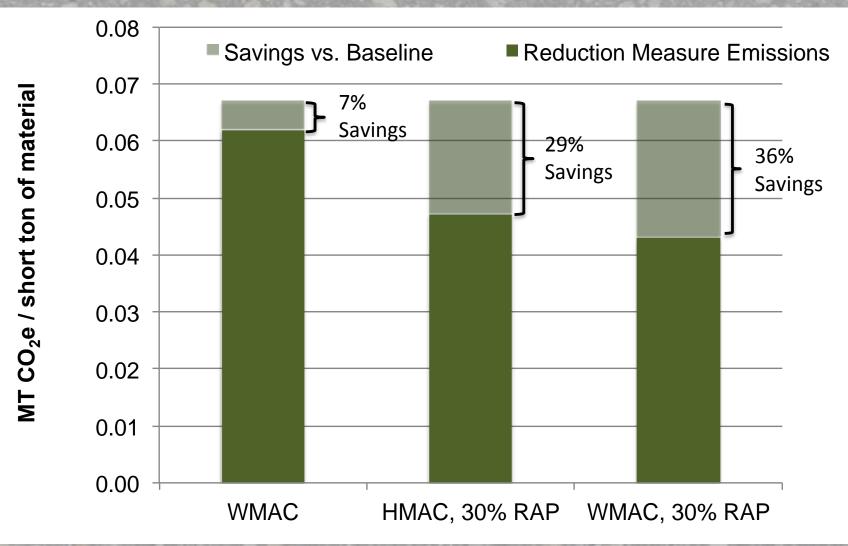
damage

- Reduced energy
use and GHG
emissions• Questions about
long-term
performance
- Cost savings from lower energy use
- Healthier/safer working conditions
- Easier to work with
 - MT CO2e/ton
 \$ / Ton

 0.062
 -\$1.29

•

Warm-Mix Asphalt Concrete


- Substitute for binder (material change)
- 80 million tons recycled / year

E	Benefits		Concerns
• Wic	lely used and	•	RAP can be stiff
pro	ven		and difficult to
tecl	nnique.		apply.
• Rec	duces costs,	•	Variability among
ene	ergy use and		RAP stockpiles
GHGs.			have prevented
• Can be used in a			national mix
variety of asphalt			standards.
mix	es.		
MT	CO2e/ton		\$ / Ton
HMA	0.047		-\$8.00
WMA	0.043		-\$9.29

Reclaimed Asphalt Pavement

Asphalt GHG Measures vs. Baseline

Baseline = 1 short ton of HMAC with 5% binder

Material/Process		Change from Baseline MT CO2e / ton	Change \$/ton
WMAC	0.062	-0.005	-\$1.29
HMAC, 30% RAP	0.047	-0.020	-\$8.00
WMAC, 30% RAP	0.043	-0.024	-\$9.29

Asphalt Summary

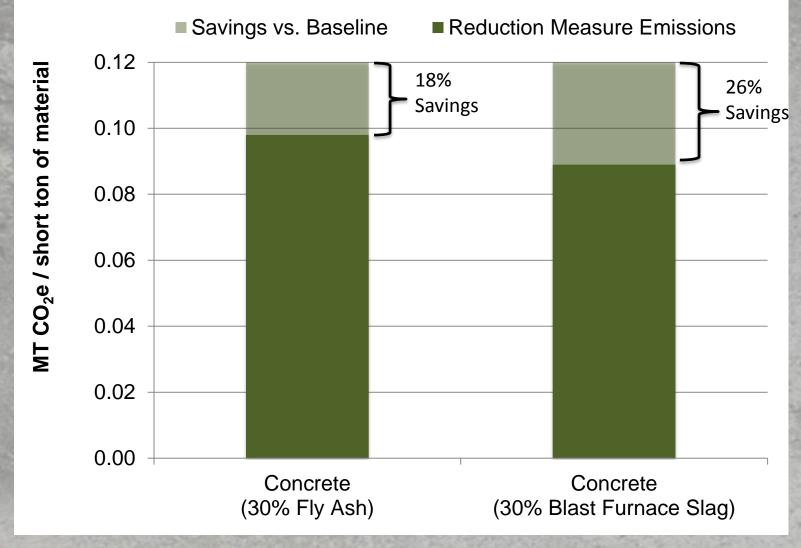
- 41% rough aggregate, 26% fine aggregate, 16% water, 11% cement, 6% air
 Crushed limestone + 2,7000°F = Lime & CO₂
- 0.120 MT CO_2e / short ton

Concrete

- Waste by-product from coal
- Generally replace 0-30% of cement
- "Class C Fly Ash"

Fly Ash

		_	
	Benefits		Concerns
•	Stronger, denser,	•	Toxicity concerns
	more durable	•	Longer set time
•	Protects steel	•	Reduced early
	better		strength
•	Increased	•	Transportation of
	workability		material can be
•	Less water		costly
•	Produces white		
	concrete		
	MT CO2e/ton		\$ / Ton
	0.098		-\$9.98


- Waste by-product from iron and steal manufacturing
- Typically replace 20-80% of cement

Slag

Benefits	Concerns
 Stronger, denser, more durable Increased workability Less water Produces white concrete 	 Health & safety concerns Longer set time Reduced early strength Increased risk of salt scaling
MT CO2e/ton	\$ / Ton
0.089	-\$6.32

Concrete GHG Measures vs. Baseline

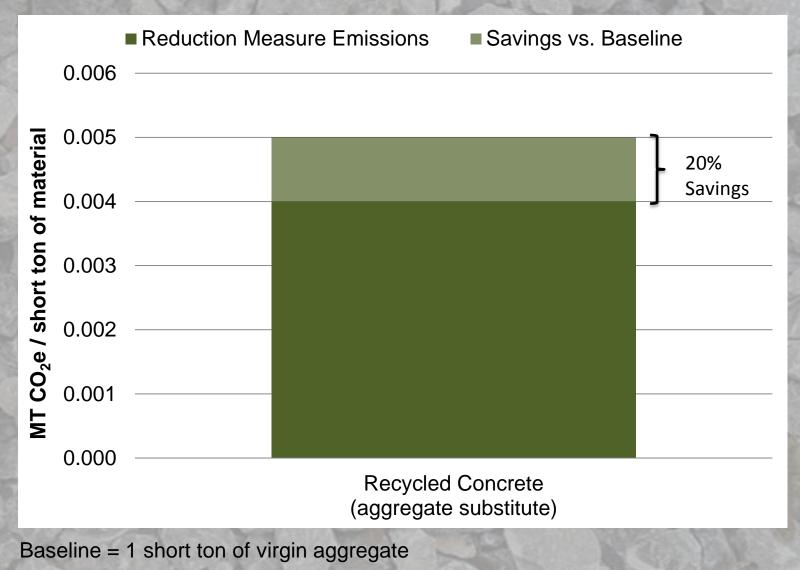
Baseline = 1 short ton of 3,600 psi concrete

Material/Process		Change from Baseline MT CO2e / ton	Change \$/ton
Concrete w/ 30% Fly Ash	0.098	-0.022	-\$9.98
Concrete w/ 30% Slag	0.089	-0.031	-\$6.32

Concrete Summary

Aggregate

- Wide, multiple uses
- Sand, gravel, rock, etc.
- Transportation GHG intensive
- 0.005 MT CO_2e / short ton


Crushed concrete

Benefits	Concerns
 Lower cost Reduced damage to roadways from aggregate transport 	 Lack of contractor experience Only for non- structural application Human health & safety concerns
MT CO2e/ton	\$ / Ton
0.004	-\$0.45

Recycled Aggregate

Aggregate GHG Measures vs. Baseline

Material/Process		Change from Baseline MT CO2e / ton	Change \$/ton
Recycled	0.004	-0.001	-\$0.45
Aggregate			

Aggregate Summary

- Develop Cost of Carbon Reduction Measure
- Expand boundaries to capture lifecycle costs
- Conduct a sensitivity analysis to determine the effect of transportation distances
- Expand material selection
- Provide the calculator with the toolkit

For more information, please contact:

Stacy Ludington

Oregon DEQ Ludington.Stacy@deq.state.or.us 503-229-5157

Aaron Toneys

Good Company aaron.toneys@goodcompany.com (541) 341-GOOD (4663)*,* ext. 218

Case Study: Warm Mix Asphalt Pavement

West Coast Climate and Materials Management Forum May 12, 2015

About the City of Eugene

- Located in the Willamette Valley in the I-5 corridor in Oregon, about 110 miles south of Portland.
- Population of more than 140,000 and Oregon's second largest City.
- Eugene covers about 41.5 square miles.
- Public Works manages about 1,260 lane miles of improved streets.

Eugene's Pavement Preservation Program

- Implementing City-wide focus on sustainability.
- 2014 projects rehabilitated 23.8 lanes miles on 19 streets.
- Methods used include:
 - Warm Mix Asphalt Pavement
 - Reclaimed Binder in Asphalt Pavement
 - In-Place Reclamation

"A Sustainable Community is one that meets its present environmental, economic and social needs without compromising the ability of future generations to meet their own needs."

- City of Eugene 'Sustainable Community' web

Eugene and Warm Mix Asphalt Pavement

- Introduced at an Asphalt Pavement Association of Oregon annual conference.
- Three pilot projects in 2009.
- Standard specification in 2010.
- Standard to combine with 30% reclaimed asphalt pavement.

Eugene and Warm Mix Asphalt Pavement

- City of Eugene Greenhouse Gas calculator "G4C" created by Good Company.
- ~34% reduction in greenhouse gases by using warm mix combined with 30% RAP.
- From 2009 2014, placed approx. 361,000 tons of warm mix asphalt pavement = reduction of 8,700 Metric Tons of CO_2e .

What is Warm Mix Asphalt Pavement?

- Used in Europe in the 1990's.
- Used in the US since 2004.
- FHWA "Everyday Counts Initiative"
- Asphalt pavement is produced and placed at 50 to 100°F lower than conventional hot mix asphalt.
- Produced by a variety of technologies, primarily using a "foaming process" or additives.

Warm Mix Asphalt Pavement Benefits

- Reduced Fuel/Energy Consumption
- Reduced Emissions
- Extended Paving Season
- Improved Performance

Warm Mix Asphalt Pavement Benefits Improved Performance

- Reduces "aging" of the binder during production.
 - Temperatures are below the boiling point of "light oils"
 - Asphalt coating is thicker because light oils haven't been burned off slowing the aging process
 - High temperatures oxidize the asphalt, like sunlight, making it brittle. By reducing the production temperature, the asphalt is not pre-oxidized in the manufacturing stage.

Warm Mix Asphalt Pavement Benefits Improved Performance

- Allows for easier and better compaction of the pavement.
 - Density is a typical acceptance criteria
 - Higher Density = Less air voids
 - Less Air Voids = Less water and air intrusion

Warm Mix Asphalt Pavement How Does it Work?

- Plant modifications or additives.
- Plant modification, known as "foaming process" is the most common.

Warm Mix Asphalt - Status in Oregon

- Eugene and Portland require warm mix asphalt pavement
- Oregon DOT has permitted warm mix by special provision
- As of 2015, Oregon DOT permits warm mix in the standard specifications
- Several other cities and counties require or permit warm mix asphalt pavement at this time.

What's next in Eugene?

- Increase reclaimed asphalt binder content in warm mix asphalt pavement.
- Pilot projects in 2013 and 2014 with 35% binder replacement.
- Good fit with warm mix asphalt pavements (less oxidization, better mixing).
- Need to adjust virgin asphalt binder properties to compensate for stiffer mix.

Questions & Contact Information

• Questions?

•

Contact Information: Jenifer Willer, P.E. Pavement Preservation Program Manager Eugene Public Works Engineering jenifer.m.willer@ci.eugene.or.us Phone: (541)501-0376

